UNDERGROUND MINING

As a recognized leader in custom engineered underground ropes, WRI has decades of experience in supplying some of the world’s deepest mines with the harshest operating conditions. Our product range is unmatched in the industry, as is our capability to design the best rope for any application.

Through innovation, Wire Rope Industries goes beyond offering rope constructions traditionally supplied by our competitors. We strive to develop new designs which combine the benefits of existing types without the inherent downsides. We listened to our clients and created Cushion-Pac 35™, a revolutionary new hoist rope that has become an instant success in the underground mining market.

Talk to our experts and let us show you how our expertise and industry-leading products can help you reach new levels of productivity and profitability.
<table>
<thead>
<tr>
<th>PRODUCTS</th>
<th>FRICITION HOIST</th>
<th>DRUM HOIST</th>
<th>BALANCE</th>
<th>GUIDE</th>
<th>SHAFT SINKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Ropes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cushion-Pac 35</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Tri-Pac & Tri-Max</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-Loc FLC</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Power-Loc HLC</td>
<td></td>
<td></td>
<td></td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Cushion 34</td>
<td></td>
<td></td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DyPac 34</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Ropes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS 3410</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>PS 1810</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>PS 620</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ground Mounted Friction Hoist
2 Hoist Ropes + 2 Balance Ropes

Tower Mounted Friction Hoist with Deflectors
4 Hoist Ropes + 2 Balance Ropes

SHAFT SINKING

- 2000 Ft (610 m)
 PS 1810

- 4000 Ft (1220 m)
 PS 3410

- 6000 Ft (1830 m)
 DyPac 34

- 6000 Ft + over (1830 m)
 Power-Loc FLC

Cushion-Pac 35
CUSHION-PAC 35™

New Rotation-Resistant Friction (Koepe) Hoist Rope

WRI’s latest product combines the flexibility of triangular flattened strand ropes with non-rotational resistance required for installation in deep shafts which was until now only available with full-lock coil construction. The result has redefined our clients’ expectations with the most versatile hoisting rope on the market.

Rotation Resistant
» Rotation resistance allows the Cushion-Pac 35 to be used in modern deep shaft mines
» Low torque means easier handling during installation and maintenance

Flexibility
» More flexible than full-lock coil ropes
» Less susceptible to structural upset

Minimal Elongation
» The parallel lay construction of the core coupled with the compacting of the outer strands give the Cushion-Pac 35 a very high metallic area, which keeps the elongation to a minimum

Compacted Outer Strands
» Increased breaking load and fatigue life
» Smooth outer surface provides larger contact area with drum & sheaves for increased wear resistance and superior traction
» Is compatible with existing polyurethane liners

Plastic Jacketed Core
» A physical separation between the outer strands and the core that effectively seals in the core lubricant and ensures the proper positioning of the outer strands

Superior Lubrication
» Outer strand lubricant is specifically formulated for Koepe friction winder applications
» Core lubricant offers optimal protection against steel-to-steel abrasion for superior fatigue life
TRI-MAX FS™ & TRI-PAC FS™

Triangular Flattened Strand Hoist Ropes

» A well-proven 6x27 langs-lay flattened triangular strand construction provides 2.5 times the contact area of a round strand rope.

» Designed for increased rope strength, wear resistance and fatigue life, and exceptional resistance to drum crushing.

» The (3/3) triangular strand center construction provides the best strength/performance combination for drums with a recommended D/d ratio of 80/1.

» An optional (6/1) brangle strand center construction provides improved flexibility and fatigue life on drums with smaller D/d ratios.

» Custom design capabilities and a full wire tensile range from 1770 MPa (115 Long Tons/In²) to 2160 MPa (140 Long Tons/In²) ensure that rope can be designed to meet individual customer requirements.

» A specially manufactured core increases rope life by significantly reducing stretch, providing a more consistent density and diameter to support the strands, resisting strand abrasion, and eliminating core rot caused by corrosive environments.

» Specially formulated lubrication increases rope performance, reduces corrosion and other effects of shaft environments, and minimizes environmental impact due to fly-off.

How Tri-Max™ ropes reduce downtime and create value:

» Greater rope contact area provides for smoother operation and reduced sheave and drum wear. The optional thermal plastic enhancement of the rope drum end significantly enhances protection of the dead wraps, improves support of the upper layers of rope.

» Reduces stretch, and limits the number of drum end cuts required. Available high-quality conveyance attachments simplify installation and removal for rope test cuts, ensure maximum rope breaking-load efficiency, and reduce maintenance downtime.

» Reduction of overall operating costs as a result of improved rope performance and maximized payloads

» Reduction of equipment downtime due to quicker maintenance turnaround and fewer drum end cuts.
POWER-LOC FLC™

Full-lock coil ropes for friction (Koepe) hoisting applications:

» A specialized full locked coil design, developed by WRI, provides one of the highest strength to weight ratios of any rope

» Significantly increased cycle life, and reduced stretch compared to round or flattened triangular strand ropes. Power-Loc FLC™ is most effective when installed with a D/d ratio greater than 100-1.

» Exclusive manufacturing techniques provide superior rotation resistance and virtually eliminate the natural torque and rotation common to round or flattened triangular strand ropes.

» Custom design capabilities and the highest wire tensile range currently available ensure that production capacity can be maximized for each individual hoisting system.

» Specially formulated lubrication maintains friction while increasing rope performance, thus reducing corrosion and other effects of shaft environments. The locked coil design has the added advantage of maintaining lubrication inside the rope.

» Greater rope contact area and minimal rotation during hoisting provides smoother conveyance operation and reduces drum wear

» Good correlation between loss in strength and loss in metallic area during EM testing makes it easier to determine the duration of rope life and to better plan change-outs

» Available high-quality conveyance attachments simplify installation and removal for rope test cuts, ensure maximum rope breaking-load efficiency, and reduce maintenance downtime.

How Power-Loc FLC™ creates value:

» Reduced overall operating costs as a result of significantly enhanced rope performance and maximized payloads.

» Reduced equipment downtime due to fewer scheduled change-outs.

» Reduced equipment maintenance costs resulting from less drum liner wear and smoother conveyance operation.

POWER-LOC HLC™

Half-lock coil ropes for Guide and Rubbing applications

WRI’s Power-Loc HLC™ guide and rubbing ropes have two decades of proven track record.

» A specially designed half locked coil construction provides excellent rotation resistance, superior wear properties and minimal movement in the shaft when compared to other rope constructions.

» Locked coil rope guides provide a cost-effective alternative to rigid wood or metal guides by allowing for reduced shaft sizes and structures, improved air displacement on moving conveyances and minimized damage and wear caused by vibration.

» WRI’s recommended 9 pair outer wire rope design has less torque and rotation, and is easier to install when compared to 7 pair rope designs.

» The smooth outer profile of the rope minimizes vibration, reduces conveyance slipper wear, and provides superior rope performance.

» Specially formulated lubrication and recommended maintenance programs extend service life and reduce the corrosive effects of shaft environments.

» Optional galvanizing further enhances corrosion resistance and service life. Galvanizing is recommended for the most severe shaft conditions.

» High-quality positioning and suspension attachments, long established installation procedures, and qualified WRI technical personnel ensure efficient handling and minimized downtime.

How Power-Loc HLC™ creates value:

» Reduced long-term operating costs as the result of increased service life and trouble-free operation

» Reduced equipment wear and smoother conveyance operation resulting in lower maintenance costs
CUSHION 34™

Plasticized multi-strand ropes for balance applications

» A 34x19 construction provides improved flexibility and an approximate natural loop to rope ratio of 50-1.

» Multi-strand spin resistance and plastic enhancement allow for smooth in-service operation, significantly reduced rope torque and stretch, and less movement in the shaft when the rope is at full speed.

» Full plastic impregnation improves spin-resistance and eliminates internal cross cutting of the strands which is common to other multi-strand products, thereby extending service life and improving security.

» Galvanized wire and WRI’s patented one-step impregnation and jacketing process, which provides a thick protective outer layer of plastic, prevents contaminants from corroding the rope and eliminates the need for costly in-field lubrication.

» A smooth outer rope profile reduces the chance of entanglement and virtually eliminates dirt buildup, thereby maintaining a more constant T1/T2 ratio. Computer-designed custom ropes ensure accurate rope weights which meet specified T1/T2 ratios.

» Factory installed sockets are also available

How Cushion 34™ creates value:

» Reduced overall operating costs as the result of enhanced performance and the elimination of in-field lubrication.

» Reduced equipment downtime resulting from fewer maintenance requirements.

» Factory installed sockets dramatically reduce installation time on site
DYPAC 34

Premium version of PS3410 design
Dy-Pac® strand enhancement of a 34x7 (LCD) construction provides additional performance, an increase in strength of approximately 15%, reduced sheave and drum wear, and significantly enhanced drum spooling. As a result, operating depths can be extended up to approximately 6000 ft (1830 m).

PS 3410

Standard rope for shaft sinking, hoisting, and balance applications
» A well-proven 34x7 construction provides good flexibility
» Multi-strand spin resistance allows for smoother in-service operation, reduced rope torque, and less movement in the shaft.
» A specialized Line Contact Design (LCD) improves performance and reduces internal cross cutting damage, common to other multi-strand products. By combining outer langs-lay strands with inner regular lay strands, the underside of the outer strand wires run in the same direction as the wires of the supporting layer.
» A specially manufactured core improves rope performance by reducing stretch, providing a more consistent density and diameter to support the strands, resisting strand abrasion, and eliminating core rot caused by corrosive environments.
» Specially formulated lubrication extends service life by reducing corrosion and other effects of shaft environments.

How PS 3410 creates value:
» Reduced overall operating costs as the result of a high performance, cost effective rope design.
» Reduced equipment downtime as the result of consistent trouble-free operation.
PS 1810

Standard rope for hoisting, balance, or shaft sinking applications

» A resilient 18x7 IWRC construction and wire tensiles ranging from 1770 MPa (115 Long Tons/in²) to 2000 MPa (130 Long Tons/in²) provide the necessary strength and reliability to operate up to depths of approximately 2000 ft (610 m).

» A specialized Line Contact Design (LCD) improves performance and reduces internal cross cutting damage, common to other multi-strand products. By combining outer langs lay strands with inner regular lay strands, the underside of the outer strand wires run in the same direction as the wires of the supporting layer.

» Specially formulated lubrication increases rope performance and reduces the corrosive effects of shaft environments.

PS 620

Standard rope for low-depth hoisting applications

» Specially selected wire tensile grades and 6 strand construction enhance wear resistance.

» Specially formulated lubrication enhances wear properties, increases rope performance, and reduces environmental impact due to fly-off and the calibrated cut lengths and custom pad eyes simplify installation and reduce down-time.

» Excellent value for less demanding applications
Developed by our parent company Bekaert, world leader in wire technology, Bezinal® is the next generation of Zinc-Aluminum coating for high-carbon wires.

We offer Bezinal for all our underground mining ropes. Bezinal coated ropes have been used by several of our flagship clients with exceptional results.

Benefits

» Superior corrosion resistance for longer lifetime
» Exposure up to 350°C leaves the coating intact
» Cathodic protection
» Active protection of cut ends
» Sustained corrosion protection at welded points
» Good formability
» Withstands heavy deformations
» Suitable for cycled fatigue loads

Bezinal® outperforms standard galvanized products by a least 3 to 1 (for the same coating weight) in many applications.

Salt Spray Performance

(hours exposure before appearance of 5% Dark Brown Rust (DBR);

Redrawn wires Bezinal® 3000
Class B according to EN-10244-2

Final coated wires Bezinal® 3000
Class A according to EN-10244-2
Wire Rope Industries | Underground Mining | Product Specifications

PRODUCT SPECIFICATIONS

BREAKING LOAD TABLES - UNDERGROUND MINING

Tri-MAX FS™

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>MINIMUM BREAKING LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tons</td>
<td>kN</td>
</tr>
<tr>
<td>inches</td>
<td>mm</td>
<td>lb/ft</td>
<td>kg/m</td>
</tr>
<tr>
<td>7/8</td>
<td>22</td>
<td>1.33</td>
<td>1.98</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>1.74</td>
<td>2.59</td>
</tr>
<tr>
<td>1 1/8</td>
<td>29</td>
<td>2.22</td>
<td>3.30</td>
</tr>
<tr>
<td>1 1/4</td>
<td>32</td>
<td>2.74</td>
<td>4.08</td>
</tr>
<tr>
<td>1 3/8</td>
<td>35</td>
<td>3.32</td>
<td>4.94</td>
</tr>
<tr>
<td>1 1/2</td>
<td>38</td>
<td>3.95</td>
<td>5.88</td>
</tr>
<tr>
<td>1 5/8</td>
<td>41</td>
<td>4.66</td>
<td>6.93</td>
</tr>
<tr>
<td>1 3/4</td>
<td>44</td>
<td>5.37</td>
<td>7.99</td>
</tr>
<tr>
<td>1 7/8</td>
<td>48</td>
<td>6.09</td>
<td>9.06</td>
</tr>
<tr>
<td>2</td>
<td>51</td>
<td>6.90</td>
<td>10.27</td>
</tr>
<tr>
<td>2 1/8</td>
<td>54</td>
<td>7.80</td>
<td>11.61</td>
</tr>
<tr>
<td>2 1/4</td>
<td>57</td>
<td>8.55</td>
<td>12.72</td>
</tr>
</tbody>
</table>

{Note: For 6x25 (6/1) brangle and 6x30 style “G” flattened (triangular) strand ropes, reduce the minimum breaking load by 5%.}
Cushion 34 Balance Ropes

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>MINIMUM BREAKING LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gr 90</td>
</tr>
<tr>
<td>inches</td>
<td>mm</td>
<td>lb/ft</td>
<td>kg/m</td>
</tr>
<tr>
<td>3/4</td>
<td>19.1</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>1.5</td>
</tr>
<tr>
<td>7/8</td>
<td>22.2</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>1.8</td>
</tr>
<tr>
<td>1</td>
<td>25.4</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>2.1</td>
</tr>
<tr>
<td>1 1/8</td>
<td>28.6</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>2.6</td>
</tr>
<tr>
<td>1 1/4</td>
<td>31.8</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>3.1</td>
</tr>
<tr>
<td>1 3/8</td>
<td>34.9</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>3.8</td>
</tr>
<tr>
<td>1 1/2</td>
<td>38.1</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>4.5</td>
</tr>
<tr>
<td>1 5/8</td>
<td>41.3</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>5.4</td>
</tr>
<tr>
<td>1 3/4</td>
<td>44.5</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>6.3</td>
</tr>
<tr>
<td>1 7/8</td>
<td>47.6</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>50.8</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>8.2</td>
</tr>
<tr>
<td>2 1/8</td>
<td>54.0</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>9.2</td>
</tr>
<tr>
<td>2 1/4</td>
<td>57.2</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>10.3</td>
</tr>
<tr>
<td>2 3/8</td>
<td>60.3</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>11.3</td>
</tr>
<tr>
<td>2 1/2</td>
<td>63.5</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>12.4</td>
</tr>
<tr>
<td>2 5/8</td>
<td>66.7</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>13.4</td>
</tr>
<tr>
<td>2 3/4</td>
<td>69.9</td>
<td>34x19 RRL Gal IWRC Cushion Rope</td>
<td>14.3</td>
</tr>
</tbody>
</table>

This table is for illustration purposes only. Balance ropes are normally custom designed to achieve a desired weight and breaking load which meet individual shaft parameters. Rope construction may also vary to suit loop requirements.

Power-LOC HLC

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>ROPE CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>MINIMUM BREAKING LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gr 65</td>
</tr>
<tr>
<td>inches</td>
<td>mm</td>
<td>lb/ft</td>
<td>kg/m</td>
</tr>
<tr>
<td>1 1/2</td>
<td>38.1</td>
<td>Power-Loc HLC</td>
<td>5.5</td>
</tr>
<tr>
<td>1 5/8</td>
<td>41.3</td>
<td>Power-Loc HLC</td>
<td>6.4</td>
</tr>
<tr>
<td>1 3/4</td>
<td>44.5</td>
<td>Power-Loc HLC</td>
<td>7.5</td>
</tr>
<tr>
<td>1 7/8</td>
<td>47.6</td>
<td>Power-Loc HLC</td>
<td>8.6</td>
</tr>
<tr>
<td>2</td>
<td>50.8</td>
<td>Power-Loc HLC</td>
<td>9.7</td>
</tr>
</tbody>
</table>
Power-LOC FLC

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>ROPE CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>MINIMUM BREAKING LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lb/ft</td>
<td>kg/m</td>
</tr>
<tr>
<td>inches</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>15.9</td>
<td>0.88</td>
<td>1.31</td>
</tr>
<tr>
<td>11/16</td>
<td>17.5</td>
<td>1.10</td>
<td>1.64</td>
</tr>
<tr>
<td>3/4</td>
<td>19.1</td>
<td>1.31</td>
<td>1.95</td>
</tr>
<tr>
<td>13/16</td>
<td>20.6</td>
<td>1.58</td>
<td>2.35</td>
</tr>
<tr>
<td>7/8</td>
<td>22.2</td>
<td>1.85</td>
<td>2.75</td>
</tr>
<tr>
<td>15/16</td>
<td>23.8</td>
<td>2.12</td>
<td>3.15</td>
</tr>
<tr>
<td>1</td>
<td>25.4</td>
<td>2.45</td>
<td>3.65</td>
</tr>
<tr>
<td>1 1/16</td>
<td>27.0</td>
<td>2.77</td>
<td>4.12</td>
</tr>
<tr>
<td>1 1/8</td>
<td>26.8</td>
<td>3.08</td>
<td>4.58</td>
</tr>
<tr>
<td>1 3/16</td>
<td>30.2</td>
<td>3.41</td>
<td>5.07</td>
</tr>
<tr>
<td>1 1/4</td>
<td>31.8</td>
<td>3.75</td>
<td>5.58</td>
</tr>
<tr>
<td>1 5/16</td>
<td>33.3</td>
<td>4.13</td>
<td>6.15</td>
</tr>
<tr>
<td>1 3/8</td>
<td>34.9</td>
<td>4.53</td>
<td>6.74</td>
</tr>
<tr>
<td>1 7/16</td>
<td>36.5</td>
<td>4.95</td>
<td>7.37</td>
</tr>
<tr>
<td>1 1/2</td>
<td>38.1</td>
<td>5.40</td>
<td>8.04</td>
</tr>
<tr>
<td>1 9/16</td>
<td>39.7</td>
<td>5.74</td>
<td>8.54</td>
</tr>
<tr>
<td>1 5/8</td>
<td>41.3</td>
<td>6.24</td>
<td>9.29</td>
</tr>
<tr>
<td>1 11/16</td>
<td>42.9</td>
<td>6.75</td>
<td>10.05</td>
</tr>
<tr>
<td>1 3/4</td>
<td>44.5</td>
<td>7.29</td>
<td>10.85</td>
</tr>
<tr>
<td>1 13/16</td>
<td>46.0</td>
<td>7.84</td>
<td>11.67</td>
</tr>
<tr>
<td>1 7/8</td>
<td>47.6</td>
<td>8.46</td>
<td>12.59</td>
</tr>
<tr>
<td>1 15/16</td>
<td>49.2</td>
<td>9.06</td>
<td>13.48</td>
</tr>
<tr>
<td>2</td>
<td>50.8</td>
<td>9.67</td>
<td>14.39</td>
</tr>
<tr>
<td>2 1/16</td>
<td>52.4</td>
<td>10.28</td>
<td>15.30</td>
</tr>
<tr>
<td>2 1/8</td>
<td>54.0</td>
<td>10.86</td>
<td>16.16</td>
</tr>
</tbody>
</table>
Dy-Pac 34

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>MINIMUM BREAKING LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lb/ft</td>
<td>kg/m</td>
</tr>
<tr>
<td>inches</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>19</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>1.10</td>
</tr>
<tr>
<td>7/8</td>
<td>22</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>1.96</td>
</tr>
<tr>
<td>1 1/8</td>
<td>29</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>2.48</td>
</tr>
<tr>
<td>1 1/4</td>
<td>32</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>3.06</td>
</tr>
<tr>
<td>1 3/8</td>
<td>35</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>3.70</td>
</tr>
<tr>
<td>1 1/2</td>
<td>38</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>4.40</td>
</tr>
<tr>
<td>1 5/8</td>
<td>41</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>5.19</td>
</tr>
<tr>
<td>1 3/4</td>
<td>44</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>6.00</td>
</tr>
<tr>
<td>1 7/8</td>
<td>48</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>7.22</td>
</tr>
<tr>
<td>2</td>
<td>51</td>
<td>34x7 RLL LCD Dy-Pac WSC</td>
<td>7.83</td>
</tr>
</tbody>
</table>

PS 620

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>ROPE CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>MINIMUM BREAKING LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lb/ft</td>
<td>kg/m</td>
</tr>
<tr>
<td>inches</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>16</td>
<td>6x19 RLL Polyester Core</td>
<td>0.65</td>
</tr>
<tr>
<td>3/4</td>
<td>19</td>
<td>6x19 RLL Polyester Core</td>
<td>0.92</td>
</tr>
<tr>
<td>7/8</td>
<td>22</td>
<td>6x19 RLL Polyester Core</td>
<td>1.24</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>6x19 RLL Polyester Core</td>
<td>1.60</td>
</tr>
<tr>
<td>1 1/8</td>
<td>29</td>
<td>6x19 RLL Polyester Core</td>
<td>2.15</td>
</tr>
<tr>
<td>1 1/4</td>
<td>32</td>
<td>6x19 RLL Polyester Core</td>
<td>2.62</td>
</tr>
<tr>
<td>1 3/8</td>
<td>35</td>
<td>6x19 RLL Polyester Core</td>
<td>3.14</td>
</tr>
<tr>
<td>1 1/2</td>
<td>38</td>
<td>6x19 RLL Polyester Core</td>
<td>3.70</td>
</tr>
<tr>
<td>1 5/8</td>
<td>41</td>
<td>6x19 RLL Polyester Core</td>
<td>4.30</td>
</tr>
<tr>
<td>1 3/4</td>
<td>44</td>
<td>6x19 RLL Polyester Core</td>
<td>4.96</td>
</tr>
</tbody>
</table>
Cushion-Pac 35 High Breaking Load

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>1770 MPa</th>
<th>1960 MPa</th>
<th>2160 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
<td>kg/m</td>
<td>kN</td>
<td>kN</td>
<td>kN</td>
</tr>
<tr>
<td>26</td>
<td>Cushion-Pac 35 HBL</td>
<td>3.3</td>
<td>510</td>
<td>560</td>
<td>620</td>
</tr>
<tr>
<td>28</td>
<td>Cushion-Pac 35 HBL</td>
<td>3.8</td>
<td>600</td>
<td>650</td>
<td>720</td>
</tr>
<tr>
<td>30</td>
<td>Cushion-Pac 35 HBL</td>
<td>4.4</td>
<td>680</td>
<td>740</td>
<td>830</td>
</tr>
<tr>
<td>32</td>
<td>Cushion-Pac 35 HBL</td>
<td>4.9</td>
<td>780</td>
<td>850</td>
<td>940</td>
</tr>
<tr>
<td>34</td>
<td>Cushion-Pac 35 HBL</td>
<td>5.6</td>
<td>880</td>
<td>950</td>
<td>1060</td>
</tr>
<tr>
<td>36</td>
<td>Cushion-Pac 35 HBL</td>
<td>6.3</td>
<td>980</td>
<td>1070</td>
<td>1190</td>
</tr>
<tr>
<td>38</td>
<td>Cushion-Pac 35 HBL</td>
<td>7.0</td>
<td>1100</td>
<td>1190</td>
<td>1320</td>
</tr>
<tr>
<td>40</td>
<td>Cushion-Pac 35 HBL</td>
<td>7.7</td>
<td>1220</td>
<td>1320</td>
<td>1470</td>
</tr>
<tr>
<td>42</td>
<td>Cushion-Pac 35 HBL</td>
<td>8.5</td>
<td>1340</td>
<td>1460</td>
<td>1620</td>
</tr>
<tr>
<td>44</td>
<td>Cushion-Pac 35 HBL</td>
<td>9.4</td>
<td>1470</td>
<td>1600</td>
<td>1780</td>
</tr>
<tr>
<td>46</td>
<td>Cushion-Pac 35 HBL</td>
<td>10.2</td>
<td>1610</td>
<td>1750</td>
<td>1940</td>
</tr>
<tr>
<td>48</td>
<td>Cushion-Pac 35 HBL</td>
<td>11.1</td>
<td>1750</td>
<td>1900</td>
<td>2110</td>
</tr>
<tr>
<td>50</td>
<td>Cushion-Pac 35 HBL</td>
<td>12.1</td>
<td>1900</td>
<td>2060</td>
<td>2290</td>
</tr>
<tr>
<td>52</td>
<td>Cushion-Pac 35 HBL</td>
<td>13.1</td>
<td>2050</td>
<td>2230</td>
<td>2480</td>
</tr>
<tr>
<td>54</td>
<td>Cushion-Pac 35 HBL</td>
<td>14.1</td>
<td>2210</td>
<td>2410</td>
<td>2680</td>
</tr>
<tr>
<td>56</td>
<td>Cushion-Pac 35 HBL</td>
<td>15.2</td>
<td>2380</td>
<td>2590</td>
<td>2880</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>Gr 115</th>
<th>Gr 125</th>
<th>Gr 140</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td></td>
<td>lb/ft</td>
<td>Tons</td>
<td>Tons</td>
<td>Tons</td>
</tr>
<tr>
<td>1</td>
<td>Cushion-Pac 35 HBL</td>
<td>2.1</td>
<td>56.0</td>
<td>60.8</td>
<td>67.6</td>
</tr>
<tr>
<td>1 1/8</td>
<td>Cushion-Pac 35 HBL</td>
<td>2.7</td>
<td>70.8</td>
<td>77.0</td>
<td>85.6</td>
</tr>
<tr>
<td>1 1/4</td>
<td>Cushion-Pac 35 HBL</td>
<td>3.3</td>
<td>87.4</td>
<td>95.0</td>
<td>106</td>
</tr>
<tr>
<td>1 3/8</td>
<td>Cushion-Pac 35 HBL</td>
<td>4.0</td>
<td>106</td>
<td>115</td>
<td>129</td>
</tr>
<tr>
<td>1 1/2</td>
<td>Cushion-Pac 35 HBL</td>
<td>4.8</td>
<td>126</td>
<td>137</td>
<td>152</td>
</tr>
<tr>
<td>1 5/8</td>
<td>Cushion-Pac 35 HBL</td>
<td>5.6</td>
<td>148</td>
<td>161</td>
<td>179</td>
</tr>
<tr>
<td>1 3/4</td>
<td>Cushion-Pac 35 HBL</td>
<td>6.5</td>
<td>171</td>
<td>186</td>
<td>207</td>
</tr>
<tr>
<td>1 7/8</td>
<td>Cushion-Pac 35 HBL</td>
<td>7.5</td>
<td>197</td>
<td>214</td>
<td>238</td>
</tr>
<tr>
<td>2</td>
<td>Cushion-Pac 35 HBL</td>
<td>8.5</td>
<td>224</td>
<td>243</td>
<td>270</td>
</tr>
<tr>
<td>2 1/8</td>
<td>Cushion-Pac 35 HBL</td>
<td>9.6</td>
<td>253</td>
<td>275</td>
<td>305</td>
</tr>
<tr>
<td>2 1/4</td>
<td>Cushion-Pac 35 HBL</td>
<td>10.8</td>
<td>283</td>
<td>308</td>
<td>342</td>
</tr>
<tr>
<td>2 3/8</td>
<td>Cushion-Pac 35 HBL</td>
<td>12.0</td>
<td>316</td>
<td>343</td>
<td>381</td>
</tr>
<tr>
<td>2 1/2</td>
<td>Cushion-Pac 35 HBL</td>
<td>13.3</td>
<td>350</td>
<td>380</td>
<td>422</td>
</tr>
</tbody>
</table>
Cushion-Pac 35 Low Weight

<table>
<thead>
<tr>
<th>DIAMETER (mm)</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT (kg/m)</th>
<th>MINIMUM BREAKING LOAD (MPa)</th>
<th>1770 MPa</th>
<th>1960 MPa</th>
<th>2160 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>2.9</td>
<td></td>
<td>440</td>
<td>480</td>
<td>540</td>
</tr>
<tr>
<td>28</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>3.4</td>
<td></td>
<td>520</td>
<td>560</td>
<td>620</td>
</tr>
<tr>
<td>30</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>3.9</td>
<td></td>
<td>590</td>
<td>640</td>
<td>720</td>
</tr>
<tr>
<td>32</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>4.5</td>
<td></td>
<td>670</td>
<td>730</td>
<td>810</td>
</tr>
<tr>
<td>34</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>5.0</td>
<td></td>
<td>760</td>
<td>830</td>
<td>920</td>
</tr>
<tr>
<td>36</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>5.7</td>
<td></td>
<td>850</td>
<td>930</td>
<td>1030</td>
</tr>
<tr>
<td>38</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>6.3</td>
<td></td>
<td>950</td>
<td>1030</td>
<td>1150</td>
</tr>
<tr>
<td>40</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>7.0</td>
<td></td>
<td>1050</td>
<td>1150</td>
<td>1270</td>
</tr>
<tr>
<td>42</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>7.7</td>
<td></td>
<td>1160</td>
<td>1260</td>
<td>1400</td>
</tr>
<tr>
<td>44</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>8.4</td>
<td></td>
<td>1270</td>
<td>1390</td>
<td>1540</td>
</tr>
<tr>
<td>46</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>9.2</td>
<td></td>
<td>1390</td>
<td>1510</td>
<td>1680</td>
</tr>
<tr>
<td>48</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>10.0</td>
<td></td>
<td>1520</td>
<td>1650</td>
<td>1830</td>
</tr>
<tr>
<td>50</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>10.9</td>
<td></td>
<td>1650</td>
<td>1790</td>
<td>1990</td>
</tr>
<tr>
<td>52</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>11.8</td>
<td></td>
<td>1780</td>
<td>1940</td>
<td>2150</td>
</tr>
<tr>
<td>54</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>12.7</td>
<td></td>
<td>1920</td>
<td>2090</td>
<td>2320</td>
</tr>
<tr>
<td>56</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>13.7</td>
<td></td>
<td>2060</td>
<td>2240</td>
<td>2490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIAMETER (inches)</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT (lb/ft)</th>
<th>MINIMUM BREAKING LOAD (Gr)</th>
<th>Gr 115</th>
<th>Gr 125</th>
<th>Gr 140</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>1.9</td>
<td></td>
<td>48.5</td>
<td>52.7</td>
<td>58.6</td>
</tr>
<tr>
<td>1 1/8</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>2.4</td>
<td></td>
<td>61.4</td>
<td>68.7</td>
<td>74.1</td>
</tr>
<tr>
<td>1 1/4</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>3.0</td>
<td></td>
<td>75.8</td>
<td>82.4</td>
<td>91.5</td>
</tr>
<tr>
<td>1 3/8</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>3.6</td>
<td></td>
<td>91.7</td>
<td>100</td>
<td>111</td>
</tr>
<tr>
<td>1 1/2</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>4.3</td>
<td></td>
<td>109</td>
<td>119</td>
<td>132</td>
</tr>
<tr>
<td>1 5/8</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>5.1</td>
<td></td>
<td>128</td>
<td>139</td>
<td>155</td>
</tr>
<tr>
<td>1 3/4</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>5.9</td>
<td></td>
<td>149</td>
<td>162</td>
<td>179</td>
</tr>
<tr>
<td>1 7/8</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>6.8</td>
<td></td>
<td>171</td>
<td>185</td>
<td>206</td>
</tr>
<tr>
<td>2</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>7.7</td>
<td></td>
<td>194</td>
<td>211</td>
<td>234</td>
</tr>
<tr>
<td>2 1/8</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>8.7</td>
<td></td>
<td>219</td>
<td>238</td>
<td>264</td>
</tr>
<tr>
<td>2 1/4</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>9.7</td>
<td></td>
<td>246</td>
<td>267</td>
<td>296</td>
</tr>
<tr>
<td>2 3/8</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>10.8</td>
<td></td>
<td>274</td>
<td>297</td>
<td>330</td>
</tr>
<tr>
<td>2 1/2</td>
<td>Cushion-Pac 35 Low Weight</td>
<td>12.0</td>
<td></td>
<td>303</td>
<td>330</td>
<td>366</td>
</tr>
</tbody>
</table>
PS 1810 (Shaft Sinking)

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>MINIMUM BREAKING LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gr 115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb/ft</td>
<td>kg/m</td>
</tr>
<tr>
<td>3/4</td>
<td>18x7 RLL LCD IvRc</td>
<td>0.99</td>
<td>1.47</td>
</tr>
<tr>
<td>7/8</td>
<td>18x7 RLL LCD IvRc</td>
<td>1.35</td>
<td>2.01</td>
</tr>
<tr>
<td>1</td>
<td>18x7 RLL LCD IvRc</td>
<td>1.76</td>
<td>2.62</td>
</tr>
<tr>
<td>1 1/8</td>
<td>18x7 RLL LCD IvRc</td>
<td>2.23</td>
<td>3.32</td>
</tr>
<tr>
<td>1 1/4</td>
<td>18x7 RLL LCD IvRc</td>
<td>2.8</td>
<td>4.17</td>
</tr>
<tr>
<td>1 3/8</td>
<td>18x7 RLL LCD IvRc</td>
<td>3.38</td>
<td>5.03</td>
</tr>
<tr>
<td>1 1/2</td>
<td>18x7 RLL LCD IvRc</td>
<td>4.02</td>
<td>5.98</td>
</tr>
<tr>
<td>1 5/8</td>
<td>18x7 RLL LCD IvRc</td>
<td>4.69</td>
<td>6.98</td>
</tr>
<tr>
<td>1 3/4</td>
<td>18x7 RLL LCD IvRc</td>
<td>5.4</td>
<td>8.04</td>
</tr>
<tr>
<td>1 7/8</td>
<td>18x7 RLL LCD IvRc</td>
<td>6.18</td>
<td>9.20</td>
</tr>
<tr>
<td>2</td>
<td>18x7 RLL LCD IvRc</td>
<td>7.08</td>
<td>10.54</td>
</tr>
<tr>
<td>2 1/8</td>
<td>18x7 RLL LCD IvRc</td>
<td>8.19</td>
<td>12.19</td>
</tr>
<tr>
<td>2 1/4</td>
<td>18x7 RLL LCD IvRc</td>
<td>9.15</td>
<td>13.62</td>
</tr>
<tr>
<td>2 3/8</td>
<td>18x7 RLL LCD IvRc</td>
<td>10.16</td>
<td>15.12</td>
</tr>
<tr>
<td>2 1/2</td>
<td>18x7 RLL LCD IvRc</td>
<td>11.22</td>
<td>16.70</td>
</tr>
</tbody>
</table>

PS 1810 (Balance Ropes)

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>MINIMUM BREAKING LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gr 115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb/ft</td>
<td>kg/m</td>
</tr>
<tr>
<td>3/4</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>0.93</td>
<td>1.36</td>
</tr>
<tr>
<td>7/8</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>1.26</td>
<td>1.88</td>
</tr>
<tr>
<td>1</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>1.64</td>
<td>2.44</td>
</tr>
<tr>
<td>1 1/8</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>2.07</td>
<td>3.08</td>
</tr>
<tr>
<td>1 1/4</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>2.56</td>
<td>3.81</td>
</tr>
<tr>
<td>1 3/8</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>3.10</td>
<td>4.61</td>
</tr>
<tr>
<td>1 1/2</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>3.69</td>
<td>5.49</td>
</tr>
<tr>
<td>1 5/8</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>4.33</td>
<td>6.44</td>
</tr>
<tr>
<td>1 3/4</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>5.02</td>
<td>7.47</td>
</tr>
<tr>
<td>1 7/8</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>5.76</td>
<td>8.57</td>
</tr>
<tr>
<td>2</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>6.56</td>
<td>9.76</td>
</tr>
<tr>
<td>2 1/8</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>7.40</td>
<td>11.01</td>
</tr>
<tr>
<td>2 1/4</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>8.30</td>
<td>12.35</td>
</tr>
<tr>
<td>2 3/8</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>9.25</td>
<td>13.77</td>
</tr>
<tr>
<td>2 1/2</td>
<td>18x7 RLL LCD Polyester Core</td>
<td>10.25</td>
<td>15.25</td>
</tr>
</tbody>
</table>
PS 3410 (Shaft Sinking)

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>MINIMUM BREAKING LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lb/ft kg/m</td>
<td>Tons kN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inches mm</td>
<td>Gr 115</td>
</tr>
<tr>
<td>3/4</td>
<td>34x7 RLL LCD WSC</td>
<td>1.01</td>
<td>1.50</td>
</tr>
<tr>
<td>7/8</td>
<td>34x7 RLL LCD WSC</td>
<td>1.38</td>
<td>2.05</td>
</tr>
<tr>
<td>1</td>
<td>34x7 RLL LCD WSC</td>
<td>1.8</td>
<td>2.68</td>
</tr>
<tr>
<td>1 1/8</td>
<td>34x7 RLL LCD WSC</td>
<td>2.28</td>
<td>3.39</td>
</tr>
<tr>
<td>1 1/4</td>
<td>34x7 RLL LCD WSC</td>
<td>2.81</td>
<td>4.18</td>
</tr>
<tr>
<td>1 3/8</td>
<td>34x7 RLL LCD WSC</td>
<td>3.41</td>
<td>5.07</td>
</tr>
<tr>
<td>1 1/2</td>
<td>34x7 RLL LCD WSC</td>
<td>4.05</td>
<td>6.03</td>
</tr>
<tr>
<td>1 5/8</td>
<td>34x7 RLL LCD WSC</td>
<td>4.76</td>
<td>7.08</td>
</tr>
<tr>
<td>1 3/4</td>
<td>34x7 RLL LCD WSC</td>
<td>5.52</td>
<td>8.21</td>
</tr>
<tr>
<td>1 7/8</td>
<td>34x7 RLL LCD WSC</td>
<td>6.33</td>
<td>9.42</td>
</tr>
<tr>
<td>2</td>
<td>34x7 RLL LCD WSC</td>
<td>7.21</td>
<td>10.73</td>
</tr>
<tr>
<td>2 1/8</td>
<td>34x7 RLL LCD WSC</td>
<td>8.13</td>
<td>12.10</td>
</tr>
<tr>
<td>2 1/4</td>
<td>34x7 RLL LCD WSC</td>
<td>9.12</td>
<td>13.57</td>
</tr>
<tr>
<td>2 3/8</td>
<td>34x7 RLL LCD WSC</td>
<td>10.16</td>
<td>15.12</td>
</tr>
<tr>
<td>2 1/2</td>
<td>34x7 RLL LCD WSC</td>
<td>11.26</td>
<td>16.76</td>
</tr>
</tbody>
</table>

PS 3410 (Balance Ropes)

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>CONSTRUCTION</th>
<th>APPROX. WEIGHT</th>
<th>MINIMUM BREAKING LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lb/ft kg/m</td>
<td>Gr 115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inches mm</td>
<td>Tons kN</td>
</tr>
<tr>
<td>3/4</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>0.94</td>
<td>1.40</td>
</tr>
<tr>
<td>7/8</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>1.28</td>
<td>1.90</td>
</tr>
<tr>
<td>1</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>1.68</td>
<td>2.50</td>
</tr>
<tr>
<td>1 1/8</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>2.12</td>
<td>3.15</td>
</tr>
<tr>
<td>1 1/4</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>2.62</td>
<td>3.90</td>
</tr>
<tr>
<td>1 3/8</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>3.17</td>
<td>4.72</td>
</tr>
<tr>
<td>1 1/2</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>3.77</td>
<td>5.61</td>
</tr>
<tr>
<td>1 5/8</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>4.42</td>
<td>6.58</td>
</tr>
<tr>
<td>1 3/4</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>5.13</td>
<td>7.63</td>
</tr>
<tr>
<td>1 7/8</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>5.89</td>
<td>8.77</td>
</tr>
<tr>
<td>2</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>6.70</td>
<td>9.97</td>
</tr>
<tr>
<td>2 1/8</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>7.57</td>
<td>11.27</td>
</tr>
<tr>
<td>2 1/4</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>8.48</td>
<td>12.82</td>
</tr>
<tr>
<td>2 3/8</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>9.45</td>
<td>14.06</td>
</tr>
<tr>
<td>2 1/2</td>
<td>34x7 RLL LCD Polyester Core</td>
<td>10.47</td>
<td>15.58</td>
</tr>
</tbody>
</table>
CONTACTS

Head Office
5501 Trans-Canada Highway
Pointe-Claire, Quebec
H9R 1B7 Canada
Tel: 514.697.9711
Fax: 514.697.3534
Toll free: 1.800.565.5501

General & Sales Inquiries
mail@wirerope.com

For Sales Representatives and Distributors in Canada, USA, and South America, please visit the CONTACT section of our website at www.wirerope.com